Performance Evaluation of Equal Gain Diversity Systems In Fading Channels
نویسندگان
چکیده
Next generation wireless systems are being designed to provide ubiquitous broadband link access to information infrastructure. Diversity techniques play a vital role in supporting such high speed connections over radio channels by mitigating the detrimental effects of multiuser interference and multipath fading. Equal gain combining (EGC) diversity receiver is of practical interest because of its reduced complexity relative to optimum maximal ratio combining scheme while achieving near-optimal performance. Despite this, the literature on EGC receiver performance is meager owing to difficulty in deriving the probability density function of the diversity combiner output. This problem is further compounded when the diversity paths are correlated. Since spatial, pattern, or polarization diversity implementations at a mobile handset are usually limited to a small diversity order with closely spaced antenna elements (owing to cost and ergonomic constraints), any performance analysis must be revamped to account for the effects of branch correlation between the combined signals. This thesis presents a powerful characteristic function method for evaluating the performance of a two-branch EGC receiver in Nakagami-m channels with nonindependent and non-identical fading statistics. The proposed framework facilitates efficient error probability analysis for a broad range of modulation/detection schemes in a unified manner. The thesis also examines the efficacy of an average diversity combiner in slotted direct sequence spread-spectrum access packet radio networks. A two-dimensional EGC diversity combining scheme is introduced, wherein a corrupted packet is retained and combined with its retransmission at the bit level to produce a more reliable packet. The mathematical analysis of the average diversity combiner presented in this thesis is sufficiently general to handle generalized fading channel models with independent fading statistics for a myriad of digital modulation schemes.
منابع مشابه
A Blind Hammerstein Diversity Combining Technique for Flat Fading Channels
Diversity combining techniques play an important role in combating the destructive effects of channel fading in wireless communication systems. In this work we present a blind diversity combining technique for Rayleigh flat fading channels based on Hammerstein type filters. We show that the performance of this technique is very close to ideal MRC system which is accepted as an optimum receiver ...
متن کاملExact evaluation of Equal-Gain Diversity in the presence of Nakagami fading
A closed formulation for the evaluation of the error probability of Lbranches Equal-Gain Combiners over Nakagami fading channels and additive Gaussian noise, is presented. Using the definition and the properties of the characteristic function of a sum of random variables, the error performance is evaluated directly for coherent detection and several modulation techniques (BPSK, BFSK). Introduct...
متن کاملBit Error Performance for Asynchronous Ds Cdma Systems Over Multipath Rayleigh Fading Channels (RESEARCH NOTE)
In recent years, there has been considerable interest in the use of CDMA in mobile communications. Bit error rate is one of the most important parameters in the evaluation of CDMA systems. In this paper, we develop a technique to find an accurate approximation to the probability of bit error for asynchronous direct–sequence code division multiple–access (DS/CDMA) systems by modeling the multipl...
متن کاملEnergy Detection of Unknown Signals over Composite multipath/shadowing Fading Channels
In this paper, the performance analysis of an energy detector is exploited over composite multipath/shadowing fading channels, which is modeled by Rayleigh-lognormal (RL) distribution. Based on an approximate channel model which was recently proposed by the author, the RL envelope probability density function (pdf) is approximated by a finite sum of weighted Rayleigh pdfs. Relying on this inter...
متن کاملMultichannel Reception of Digital Signals over Correlated Nakagami Fading Channels
We obtain generic expressions for the average error rate of multichannel reception of digital signals over correlated slowly varying Nakagami-m fading channels. The results are applicable to coherent detection with maximal-ratio combining as well as to diierentially coherent and noncoherent detection with post-detection equal-gain combining. Aside from extending previous analyses of diversity r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003